Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.276
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Head Neck ; 46(6): 1253-1262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600434

RESUMO

BACKGROUND: An international multidisciplinary panel of experts aimed to provide consensus guidelines describing the optimal intratumoral and intranodal injection of NBTXR3 hafnium oxide nanoparticles in head and neck squamous cell carcinoma (HNSCC) of the oral cavity, oropharynx, and cervical lymph nodes and to review data concerning safety, feasibility, and procedural aspects of administration. METHODS: The Delphi method was used to determine consensus. A 4-member steering committee and a 10-member monitoring committee wrote and revised the guidelines, divided into eight sections. An independent 3-member reading committee reviewed the recommendations. RESULTS: After two rounds of voting, strong consensus was obtained on all recommendations. Intratumoral and intranodal injection was deemed feasible. NBTXR3 volume calculation, choice of patients, preparation and injection procedure, potential side effects, post injection, and post treatment follow-up were described in detail. CONCLUSIONS: Best practices for the injection of NBTXR3 were defined, thus enabling international standardization of intratumoral nanoparticle injection.


Assuntos
Neoplasias de Cabeça e Pescoço , Injeções Intralesionais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Técnica Delphi , Háfnio/administração & dosagem , Óxidos/administração & dosagem , Nanopartículas/administração & dosagem , Masculino , Consenso , Feminino , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Guias de Prática Clínica como Assunto
2.
Theranostics ; 14(6): 2526-2543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646640

RESUMO

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Assuntos
Ácido Clodrônico , Pulmão , Macrófagos Peritoneais , Nanopartículas , Animais , Ácido Clodrônico/farmacologia , Ácido Clodrônico/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Pulmão/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Transcrição GATA6/metabolismo , Lipossomos , Camundongos Endogâmicos C57BL , Carbocianinas/química , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo
3.
Int J Pharm ; 656: 124045, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561134

RESUMO

The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.


Assuntos
Morte Celular Imunogênica , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Animais , Nanopartículas/administração & dosagem , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos
4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38682465

RESUMO

Vitamin E (VE) is a potent nutritional antioxidant that is critical in alleviating poultry oxidative stress. However, the hydrophobic nature and limited stability of VE restrict its effective utilization. Nanotechnology offers a promising approach to enhance the bioavailability of lipophilic vitamins. The objective of this experiment was to investigate the effects of different sources and addition levels of VE on the growth performance, antioxidant capacity, VE absorption site, and pharmacokinetics of Arbor Acres (AA) broilers. Three hundred and eighty-four 1-d-old AA chicks were randomly allocated into four groups supplemented with 30 and 75 IU/kg VE as regular or nano. The results showed that dietary VE sources had no significant impact on broiler growth performance. However, chickens fed 30 IU/kg VE had a higher average daily gain at 22 to 42 d and 1 to 42 d, and lower feed conversion ratio at 22 to 42 d than 75 IU/kg VE (P < 0.05). Under normal feeding conditions, broilers fed nano VE (NVE) displayed significantly higher superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) enzyme activities and lower malonic dialdehyde (MDA) concentration (P < 0.05). Similarly, NVE had a higher antioxidant effect in the dexamethasone-constructed oxidative stress model. It was found that nanosizing technology had no significant effect on the absorption of VE in the intestinal tract by examining the concentration of VE in the intestinal tract (P > 0.05). However, compared to broilers perfused with regular VE (RVE), the NVE group displayed notably higher absorption rates at 11.5 and 14.5 h (P < 0.05). Additionally, broilers perfused with NVE showed a significant increase in the area under the concentration versus time curve from zero to infinity (AUC0-∞), mean residence time (MRT0-∞), elimination half-life (t1/2z), and peak concentration (Cmax) of VE in plasma (P < 0.05). In summary, nanotechnology provides more effective absorption and persistence of VE in the blood circulation for broilers, which is conducive to the function of VE and further improves the antioxidant performance of broilers.


With the rapid development of intensive farming, factors such as high temperature, harmful gases, high-fat and high-protein diets, and changes in feeding methods have become causes of oxidative stress in animals. Studies have shown that oxidative stress decreases livestock feed intake and slows growth in animals, thereby affecting the quality of livestock products. Antioxidants and micronutrients are commonly added to animal feed to reduce the effects of oxidative stress. Since the progress in nanotechnology, nanovitamins have gained extensive recognition due to their novel qualities, including a high level of adsorption capacity and low toxicity. Therefore, the present study compared the effects of dietary supplementation with different sources of vitamin E (regular, RVE vs. nano, NVE) and varying inclusion levels on the growth performance, antioxidant capacity, VE absorption sites, and pharmacokinetics in AA broilers. The results indicated that supplementing broiler diets with NVE provides superior antioxidant benefits compared to RVE. This improvement is attributed to the enhanced absorption efficiency and extended half-life of NVE, both contributing to increased antioxidant performance of broilers.


Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Suplementos Nutricionais , Vitamina E , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ração Animal/análise , Dieta/veterinária , Vitamina E/administração & dosagem , Vitamina E/farmacocinética , Vitamina E/farmacologia , Suplementos Nutricionais/análise , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Masculino , Distribuição Aleatória
5.
J Cancer Res Ther ; 20(2): 684-694, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687941

RESUMO

OBJECTIVES: Gypenoside (Gyp) is easily degraded in the gastrointestinal tract, resulting in its low bioavailability. We aimed to develop a tumor-targeted Gyp nanodrug delivery system and to investigate its antitumor effect in vitro. MATERIALS AND METHODS: We used Gyp as the therapeutic drug molecule, mesoporous silica (MSN) and liposome (Lipo) as the drug carrier and protective layers, and aptamer SYL3C as the targeting element to establish a tumor-targeted nanodrug delivery system (i.e., SYL3C-Lipo@Gyp-MSN). The characteristics of SYL3C-Lipo@Gyp-MSN were investigated, and its drug release performance, cell uptake, and antitumor activity in vitro were evaluated. RESULTS: A tumor-targeted Gyp nanodrug delivery system was successfully prepared. The SYL3C-Lipo@Gyp-MSN was spherical or ellipsoidal; had good dispersion, which enabled it to specifically target and kill the liver tumor cell HepG2; and effectively protected the early leakage of Gyp. CONCLUSIONS: We have established a tumor-targeted nanodrug delivery system that can target and kill liver cancer cells and may provide a strategy for preparing new nanodrug-loaded preparations of traditional Chinese medicine.


Assuntos
Gynostemma , Lipossomos , Humanos , Gynostemma/química , Lipossomos/química , Células Hep G2 , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Dióxido de Silício/química , Liberação Controlada de Fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Nanopartículas/química , Nanopartículas/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem
6.
Biomater Adv ; 160: 213865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643693

RESUMO

Microneedle technology offers a minimally invasive treatment strategy to deliver chemotherapeutics to localized tumors. Amalgamating the surface functionalized nanoparticles with microneedle technology can potentially deliver drugs directly to tumors and subsequently target cancer cells via, overexpressed receptors on the cell surface, thereby enhancing the treatment efficacy while reducing side effects. Here, we report cetuximab anchored hyaluronic acid-oleylamine and chitosan-oleic acid-based hybrid nanoparticle (HA-OA/CS-OA NPT)-loaded dissolving microneedles (MN) for targeted delivery of cabazitaxel (CBT) in localized breast cancer tumor. The HA-OA/CS-OA NPT was characterized for their size, surface charge, morphology, physicochemical characteristics, drug release behavior, and in vitro anti-cancer efficacy. The HA-OA/CS-OA NPT were of ~125 nm size, showed enhanced cytotoxicity and cellular uptake, and elicited a superior apoptotic response against MDA-MB-231 cells. Subsequently, the morphology and physicochemical characteristics of HA-OA/CS-OA NPT-loaded MN were also evaluated. The fabricated microneedles were of ~550 µm height and showed loading of nanoparticles equivalent to ~250 µg of CBT. The ex vivo skin permeation study revealed fast dissolution of microneedles upon hydration, while the drug permeation across the skin exhibited ~4-fold improvement in comparison to free drug-loaded MN. In vivo studies performed on DMBA-induced breast cancer in female SD rats showed a marked reduction in tumor volume after administration of drug and nanoparticle-loaded microneedles in comparison to intravenous administration of free drug. However, the HA-OA/CS-OA NPT-MN showed the highest tumor reduction and survival rate, with the lowest body weight reduction in comparison to other treatment groups, indicating its superior efficacy and low systemic toxicity. Overall, the dissolving microneedle-mediated delivery of targeted nanoparticles loaded with chemotherapeutics offers a superior alternative to conventional intravenous chemotherapy.


Assuntos
Neoplasias da Mama , Quitosana , Ácido Hialurônico , Nanopartículas , Agulhas , Ácido Oleico , Ácido Hialurônico/química , Animais , Quitosana/química , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ácido Oleico/química , Linhagem Celular Tumoral , Nanopartículas/química , Nanopartículas/administração & dosagem , Ratos , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Ratos Sprague-Dawley , Liberação Controlada de Fármacos
7.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38498328

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Assuntos
Neoplasias Colorretais , Fosfatos de Dinucleosídeos , Nanopartículas , Tretinoína , Tretinoína/química , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Humanos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Camundongos Endogâmicos C57BL , Feminino , Imunoterapia/métodos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Nanopartículas em Multicamadas
8.
Biomater Sci ; 12(9): 2381-2393, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38500446

RESUMO

The inability to systemic administration of nanoparticles, particularly cationic nanoparticles, has been a significant barrier to their clinical translation due to toxicity concerns. Understanding the in vivo behavior of cationic lipids is crucial, given their potential impact on critical biological components such as immune cells and hematopoietic stem cells (HSC). These cells are essential for maintaining the body's homeostasis, and their interaction with cationic lipids is a key factor in determining the safety and efficacy of these nanoparticles. In this study, we focused on the cytotoxic effects of cationic lipid/DNA complexes (CLN/DNA). Significantly, we observed that the most substantial cytotoxic effects, including a marked increase in numbers of long-term hematopoietic stem cells (LT-HSC), occurred 24 h post-CLN/DNA treatment in mice. Furthermore, we found that CLN/DNA-induced HSC expansion in bone marrow (BM) led to a notable decrease in the ability to reestablish blood cell production. Our study provides crucial insights into the interaction between cationic lipids and vital cellular components of the immune and hematopoietic systems.


Assuntos
Cátions , DNA , Células-Tronco Hematopoéticas , Lipídeos , Animais , DNA/química , DNA/administração & dosagem , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Cátions/química , Lipídeos/química , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos Endogâmicos C57BL
9.
Mol Pharm ; 21(5): 2148-2162, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38536949

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer for which effective therapies are lacking. Targeted remodeling of the immunosuppressive tumor microenvironment (TME) and activation of the body's immune system to fight tumors with well-designed nanoparticles have emerged as pivotal breakthroughs in tumor treatment. To simultaneously remodel the immunosuppressive TME and trigger immune responses, we designed two potential therapeutic nanodelivery systems to inhibit TNBC. First, the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 and the cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) were coloaded into chondroitin sulfate (CS) to obtain CS@JQ1/CXB nanoparticles (NPs). Then, the biomimetic nanosystem MM@P3 was prepared by coating branched polymer poly(ß-amino ester) self-assembled NPs with melittin embedded macrophage membranes (MM). Both in vitro and in vivo, the CS@JQ1/CXB and MM@P3 NPs showed excellent immune activation efficiencies. Combination treatment exhibited synergistic cytotoxicity, antimigration ability, and apoptosis-inducing and immune activation effects on TNBC cells and effectively suppressed tumor growth and metastasis in TNBC tumor-bearing mice by activating the tumor immune response and inhibiting angiogenesis. In summary, this study offers a novel combinatorial immunotherapeutic strategy for the clinical TNBC treatment.


Assuntos
Azepinas , Celecoxib , Triazóis , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Feminino , Camundongos , Humanos , Celecoxib/administração & dosagem , Linhagem Celular Tumoral , Sulfatos de Condroitina/química , Sulfatos de Condroitina/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Meliteno/administração & dosagem , Meliteno/química , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Polímeros/química , Camundongos Nus , Sistemas de Liberação de Medicamentos/métodos
10.
Drug Deliv Transl Res ; 14(6): 1535-1550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161196

RESUMO

Targeted nanodelivery systems offer a promising approach to cancer treatment, including the most common cancer in women, breast cancer. In this study, a targeted, pH-responsive, and biocompatible nanodelivery system based on nucleolin aptamer-functionalized biogenic titanium dioxide nanoparticles (TNP) was developed for targeted co-delivery of FOXM1 aptamer and doxorubicin (DOX) to improve breast cancer therapy. The developed targeted nanodelivery system exhibited almost spherical morphology with 124.89 ± 12.97 nm in diameter and zeta potential value of - 23.78 ± 3.66 mV. FOXM1 aptamer and DOX were loaded into the nanodelivery system with an efficiency of 100% and 97%, respectively. Moreover, the targeted nanodelivery system demonstrated excellent stability in serum and a pH-responsive sustained drug release profile over a period of 240 h following Higuchi kinetic and Fickian diffusion mechanism. The in vitro cytotoxicity experiments demonstrated that the targeted nanodelivery system provided selective internalization and strong growth inhibition effects of about 45 and 51% against nucleolin-positive 4T1 and MCF-7 breast cancer cell lines. It is noteworthy that these phenomena were not observed in nucleolin-negative cells (CHO). The preclinical studies revealed that a single-dose intravenous injection of the targeted nanodelivery system into 4T1-bearing mice inhibited tumor growth by 1.7- and 1.4-fold more efficiently than the free drug and the non-targeted nanodelivery system, respectively. Our results suggested that the developed innovative targeted pH-responsive biocompatible nanodelivery system could serve as a prospectively potential platform to improve breast cancer treatment.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Doxorrubicina , Proteína Forkhead Box M1 , Nucleolina , Fosfoproteínas , Proteínas de Ligação a RNA , Animais , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/administração & dosagem , Feminino , Fosfoproteínas/administração & dosagem , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Ligação a RNA/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Liberação Controlada de Fármacos , Camundongos Endogâmicos BALB C , Camundongos , Linhagem Celular Tumoral , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanopartículas/administração & dosagem
11.
Cells ; 12(16)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37626862

RESUMO

The low distribution of hydrophobic anticancer drugs in patients is one of the biggest limitations during conventional chemotherapy. SDS-based polyelectrolyte multicore nanocarriers (NCs) prepared according to the layer by layer (LbL) procedure can release paclitaxel (PTX), and selectively kill cancer cells. Our main objective was to verify the antitumor properties of PTX-loaded NCs and to examine whether the drug encapsulated in these NCs retained its cytotoxic properties. The cytotoxicity of the prepared nanosystems was tested on MCF-7 and MDA-MB-231 tumour cells and the non-cancerous HMEC-1 cell line in vitro. Confocal microscopy, spectrophotometry, spectrofluorimetry, flow cytometry, and RT PCR techniques were used to define the typical hallmarks of apoptosis. It was demonstrated that PTX encapsulated in the tested NCs exhibited similar cytotoxicity to the free drug, especially in the triple negative breast cancer model. Moreover, SDS/PLL/PTX and SDS/PLL/PGA/PTX significantly reduced DNA synthesis. In addition, PTX-loaded NCs triggered apoptosis and upregulated the transcription of Bax, AIF, cytochrome-c, and caspase-3 mRNA. Our data demonstrate that these novel polyelectrolyte multicore NCs coated with PLL or PLL/PGA are good candidates for delivering PTX. Our discoveries have prominent implications for the possible choice of newly synthesized, SDS-based polyelectrolyte multicore NCs in different anticancer therapeutic applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Paclitaxel , Dodecilsulfato de Sódio , Paclitaxel/administração & dosagem , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/administração & dosagem , Nanopartículas/química , Dodecilsulfato de Sódio/administração & dosagem , Eletrólitos/química , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos
12.
Int J Pharm ; 643: 123241, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37479101

RESUMO

Multiple myeloma (MM) is a malignant and incurable disease. Chemotherapy is currently the primary treatment option for MM. However, chemotherapeutic drugs can interrupt treatment because of serious side effects. Therefore, development of novel therapeutics for MM is essential. In this study, we designed and constructed an innovative nanoparticle-based drug delivery system, P-R@Ni3P-BTZ, and investigated its feasibility, effectiveness, and safety both in vitro and in vivo. P-R@Ni3P-BTZ is a nanocomposite that consists of two parts: (1) the drug carrier (Ni3P), which integrates photothermal therapy (PTT) with chemotherapy by loading bortezomib (BTZ); and (2) the shell (P-R), a CD38 targeting peptide P-modified red blood cell membrane nanovesicles. In vitro and in vivo, it was proven that P-R@Ni3P-BTZ exhibits remarkable antitumor effects by actively targeting CD38 + MM cells. P-R@Ni3P-BTZ significantly induces the accumulation of intracellular reactive oxygen species (ROS) and increases the apoptosis of MM cells, which underlies the primary mechanism of its antitumor effects. In addition, P-R@Ni3P exhibits good biocompatibility and biosafety, both in vitro and in vivo. Overall, P-R@Ni3P-BTZ is a specific and efficient MM therapeutic method.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Nanopartículas , Humanos , Apoptose , Bortezomib , Linhagem Celular Tumoral , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Nanopartículas/administração & dosagem
13.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902076

RESUMO

Triple-negative breast cancer (TNBC) is an extremely aggressive subtype associated with a poor prognosis. At present, the treatment for TNBC mainly relies on surgery and traditional chemotherapy. As a key component in the standard treatment of TNBC, paclitaxel (PTX) effectively inhibits the growth and proliferation of tumor cells. However, the application of PTX in clinical treatment is limited due to its inherent hydrophobicity, weak penetrability, nonspecific accumulation, and side effects. To counter these problems, we constructed a novel PTX conjugate based on the peptide-drug conjugates (PDCs) strategy. In this PTX conjugate, a novel fused peptide TAR consisting of a tumor-targeting peptide, A7R, and a cell-penetrating peptide, TAT, is used to modify PTX. After modification, this conjugate is named PTX-SM-TAR, which is expected to improve the specificity and penetrability of PTX at the tumor site. Depending on hydrophilic TAR peptide and hydrophobic PTX, PTX-SM-TAR can self-assemble into nanoparticles and improve the water solubility of PTX. In terms of linkage, the acid- and esterase-sensitive ester bond was used as the linking bond, with which PTX-SM-TAR NPs could remain stable in the physiological environment, whereas PTX-SM-TAR NPs could be broken and PTX be released at the tumor site. A cell uptake assay showed that PTX-SM-TAR NPs were receptor-targeting and could mediate endocytosis by binding to NRP-1. The vascular barrier, transcellular migration, and tumor spheroids experiments showed that PTX-SM-TAR NPs exhibit great transvascular transport and tumor penetration ability. In vivo experiments, PTX-SM-TAR NPs showed higher antitumor effects than PTX. As a result, PTX-SM-TAR NPs may overcome the shortcomings of PTX and present a new transcytosable and targeted delivery system for PTX in TNBC treatment.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Oligopeptídeos , Paclitaxel , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Pró-Fármacos/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Oligopeptídeos/administração & dosagem
14.
J Pharm Sci ; 112(5): 1401-1410, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36596392

RESUMO

Delivery of messenger RNA (mRNA) using lipid nanoparticles (LNPs) is expected to be applied to various diseases following the successful clinical use of the mRNA COVID-19 vaccines. This study aimed to evaluate the effect of the cholesterol molar percentage of mRNA-LNPs on protein expression in hepatocellular carcinoma-derived cells and in the liver after intramuscular or subcutaneous administration of mRNA-LNPs in mice. For mRNA-LNPs with cholesterol molar percentages reduced to 10 mol% and 20 mol%, we formulated neutral charge particles with a diameter of approximately 100 nm and polydispersity index (PDI) <0.25. After the intramuscular or subcutaneous administration of mRNA-LNPs with different cholesterol molar percentages in mice, protein expression in the liver decreased as the cholesterol molar percentage in mRNA-LNPs decreased from 40 mol% to 20 mol% and 10 mol%, suggesting that reducing the cholesterol molar percentage in mRNA-LNPs decreases protein expression in the liver. Furthermore, in HepG2 cells, protein expression decreased as cholesterol in mRNA-LNPs was reduced by 40 mol%, 20 mol%, and 10 mol%. These results suggest that the downregulated expression of mRNA-LNPs with low cholesterol content in the liver involves degradation in systemic circulating blood and decreased protein expression after hepatocyte distribution.


Assuntos
Colesterol , Fígado , RNA Mensageiro , RNA Mensageiro/administração & dosagem , Animais , Camundongos , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Linhagem Celular Tumoral , Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Fígado/metabolismo , Luciferases/metabolismo , Masculino , Humanos , Lipossomos/administração & dosagem , Lipossomos/análise , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/análise , Nanopartículas/química
15.
ACS Nano ; 17(5): 4261-4278, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706095

RESUMO

Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.


Assuntos
Nanopartículas , Fármacos Fotossensibilizantes , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas , Humanos , Morte Celular , Linhagem Celular Tumoral , Ferro/administração & dosagem , Ferro/uso terapêutico , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Feminino , Raios Infravermelhos/uso terapêutico , Terapia Fototérmica/métodos , Sulfetos/administração & dosagem , Sulfetos/uso terapêutico , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação
16.
J Control Release ; 353: 889-902, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528194

RESUMO

The use of bacteria as living vehicles has attracted increasing attentions in tumor therapy field. The combination of functional materials with bacteria dramatically facilitates the antitumor effect. Here, we presented a rationally designed living system formed by programmed Escherichia Coli MG1655 cells (Ec) and black phosphorus (BP) nanoparticles (NPs). The bacteria were genetically engineered to express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), via an outer membrane YiaT protein (Ec-T). The Ec-T cells were associated with BP NPs on their surface to acquire BP@Ec-T. The designed living system could transfer the photoelectrons produced by BP NPs after laser irradiation and triggered the reductive metabolism of nitrate to nitric oxide for the in situ release at tumor sites, facilitating the therapeutic efficacy and the polarization of tumor associated macrophages to M1 phenotype. Meanwhile, the generation of reactive oxygen species induced the immunogenic cell death to further improve the antitumor efficacy. Additionally, the living system enhanced the immunological effect by promoting the apoptosis of tumor cells, activating the effect of T lymphocytes and releasing the pro-inflammatory cytokines. The integration of BP NPs, MG1655 cells and TRAIL led to an effective tumor therapy. Our work established an approach for the multifunctional antitumor living therapy.


Assuntos
Apoptose , Escherichia coli , Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Apoptose/genética , Apoptose/fisiologia , Bactérias/metabolismo , Linhagem Celular Tumoral , Citocinas/farmacologia , Neoplasias/terapia , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fósforo/administração & dosagem , Nanopartículas/administração & dosagem , Terapia Biológica/métodos
17.
Pediatr Res ; 93(4): 827-837, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35794251

RESUMO

BACKGROUND: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. We investigated a novel spinel-structured citrate-functionalized trimanganese tetroxide nanoparticle (C-Mn3O4 NP, the nanodrug) to degrade both systemic and neural bilirubin loads. METHOD: Severe neonatal unconjugated hyperbilirubinemia (SNH) was induced in neonatal C57BL/6j mice model with phenylhydrazine (PHz) intoxication. Efficiency of the nanodrug on both in vivo bilirubin degradation and amelioration of bilirubin encephalopathy and associated neurobehavioral sequelae were evaluated. RESULTS: Single oral dose (0.25 mg kg-1 bodyweight) of the nanodrug reduced both total serum bilirubin (TSB) and unconjugated bilirubin (UCB) in SNH rodents. Significant (p < 0.0001) UCB and TSB-degradation rates were reported within 4-8 h at 1.84 ± 0.26 and 2.19 ± 0.31 mg dL-1 h-1, respectively. Neural bilirubin load was decreased by 5.6 nmol g-1 (p = 0.0002) along with improved measures of neurobehavior, neuromotor movements, learning, and memory. Histopathological studies confirm that the nanodrug prevented neural cell reduction in Purkinje and substantia nigra regions, eosinophilic neurons, spongiosis, and cell shrinkage in SNH brain parenchyma. Brain oxidative status was maintained in nanodrug-treated SNH cohort. Pharmacokinetic data corroborated the bilirubin degradation rate with plasma nanodrug concentrations. CONCLUSION: This study demonstrates the in vivo capacity of this novel nanodrug to reduce systemic and neural bilirubin load and reverse bilirubin-induced neurotoxicity. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemopreventive approach to clinical settings. IMPACT: None of the current pharmacotherapeutics treat severe neonatal hyperbilirubinemia (SNH) to prevent risks of neurotoxicity. In this preclinical study, a newly investigated nano-formulation, citrate-functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs), exhibits bilirubin reduction properties in rodents. Chemopreventive properties of this nano-formulation demonstrate an efficacious, efficient agent that appears to be safe in these early studies. Translation of C-Mn3O4 NPs to prospective preclinical and clinical trials in appropriate in vivo models should be explored as a potential novel pharmacotherapy for SNH.


Assuntos
Hiperbilirrubinemia Neonatal , Kernicterus , Compostos de Manganês , Animais , Camundongos , Bilirrubina , Quimioprevenção , Hiperbilirrubinemia Neonatal/prevenção & controle , Kernicterus/prevenção & controle , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Animais Recém-Nascidos , Modelos Animais de Doenças , Compostos de Manganês/administração & dosagem , Nanopartículas/administração & dosagem
18.
Pharm Dev Technol ; 27(10): 1057-1068, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36416448

RESUMO

With the increase in respiratory conditions including lung cancer post covid-19 pandemic, drug-loaded nanoparticulate dry powder inhalers (DPIs) can facilitate targeted lung delivery as a patient-friendly, non-invasive method. The aim of this work was to synthesise and optimise iron oxide nanoparticles (IONPs) containing dactinomycin as a model drug, using Quality by Design principles. Chitosan and sodium alginate were investigated as polymeric coatings. The mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), burst-effect (BE), entrapment-efficiency and the emitted-dose (ED) were investigated in initial screening studies and outcomes used to set up a Design of Experiments. Results revealed that chitosan IONPs were superior to that of sodium alginate in delivering DPI with optimal properties [ED (89.9%), FPF (59.7%), MMAD (1.59 µm) and BE (12.7%)]. Design space for targeted IONPs included formulations containing 2.1-2.5% dactinomycin and 0.5-0.9% chitosan. Differential scanning calorimetry and X-ray diffraction and SEM-EDS analysis revealed effective formation of IONPs, and TEM images revealed the production of spherical IONPs with particle size of 4.4 ± 0.77 nm. This work overcame the light sensitivity of dactinomycin to potentially target the high molecular weight drugs to the lungs, with controlled delivery based on a reduced burst effect.


Assuntos
Dactinomicina , Pulmão , Nanopartículas , Humanos , Administração por Inalação , Alginatos/química , Quitosana/química , COVID-19 , Dactinomicina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Nanopartículas/química , Aerossóis e Gotículas Respiratórios , Sistemas de Liberação de Medicamentos
19.
J Biomed Nanotechnol ; 18(4): 1001-1008, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854457

RESUMO

The aim of this study was to examine the impact of Resveratrol nanoparticles on migration/invasion capacity of renal cell carcinoma (RCC) cells and its mechanism. Human RCC cells were exposed to dimethyl sulfoxide or gradient concentrations of Resveratrol nanoparticles respectively, and U0126 were also added in some experiments. We examined renal cell viability by MTT assay, and wound healing test and Transwell assays were used detect invasion and migration capability of RCC cells. We used Western blotting assay to analyze the protein levels in extracellular signal-regulated kinase (ERK) signaling. We also detected the enzymatic capacity of matrix metalloproteinase 2 (MMP-2) in cells by gelatin enzymatic profiling. Resveratrol nanoparticles treatment significantly suppressed cell viability to migrate and invade RCC cells in a dose-dependent manner. Also, notably were reduced MMP-2 activity and expression, and elevated TIMP-2 level were observed in RCC cells exposed with Resveratrol nanoparticles. Further, Resveratrol nanoparticles treatment significantly decreased only the expression of p-ERK1/2, but not p-p38 and p-JNK. Moreover, U0126, which is the ERK inhibitor, exerted similar role as Resveratrol nanoparticles did. Of note was that, combined use of U0126 and Resveratrol nanoparticles displayed a more intense suppression of MMP-2 activity and expression, and also the viability to migrate and invade the RCC cells, compared with Resveratrol nanoparticles treatment alone. The Resveratrol nanoparticles inhibited RCC cells migration and invasion by regulating MMP2 expression and ERK pathways.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz , Nanopartículas , Resveratrol , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Inibidores de Metaloproteinases de Matriz/farmacologia , Nanopartículas/administração & dosagem , Invasividade Neoplásica , Resveratrol/administração & dosagem , Resveratrol/farmacologia
20.
BMC Pharmacol Toxicol ; 23(1): 48, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820920

RESUMO

BACKGROUND: Stemness of CD133+EPCAM+ hepatocellular carcinoma cells ensures cancer resistance to apoptosis,which is a challenge to current liver cancer treatments. In this study, we evaluated the tumorcidal activity of a novel nanoparticle of nitidine chloride (TPGS-FA/NC, TPGS-FA: folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate, NC: nitidine chloride), against human hepatocellular carcinoma (HCC) cell line Huh7 growth in vitro and in vivo. METHODS: Huh7 cells were treated with TPGS-FA/NC. Cell proliferation was assessed using MTT and colony assays. The expression of cell markers and signaling proteins was detected using western blot analyses. A sphere culture technique was used to enrich cancer stem cells (CSC) in Huh7 cells. TPGS-FA/NC (7.5, 15, 30, 60, 120 µg/mL) dose-dependently inhibited the proliferation of HCC cells, which associated with a reduction in AQP3 and STAT3 expression. Importantly,TPGS-FA/NC (10, 20, and 40 µg/mL) significantly reduced the EpCAM+/CD133+cell numbers, suppressed the sphere formation. The in vivo antitumor efficacy of TPGS-FA/NC was proved in Huh7 cell xenograft model in BALB/c nude mice, which were administered TPGS-FA/NC(4 mg· kg - 1· d - 1, ig) for 2 weeks. RESULTS: TPGS-FA/NC dose-dependently suppressed the AQP3/STAT3/CD133 axis in Huh7 cells. In Huh7 xenograft bearing nude mice, TPGS-FA/NC administration markedly inhibited Huh7 xenograft tumor growth . CONCLUSIONS: TPGS-FA/NC inhibit HCC tumor growth through multiple mechanisms, and it may be a promising candidate drug for the clinical therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Células-Tronco Neoplásicas , Antígeno AC133/metabolismo , Animais , Benzofenantridinas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA